4 Shifts Sóficos

Suponha que as arestas de um grafo sejam denominadas por símbolos de um alfabeto finito \mathcal{A} , onde duas ou mais arestas podem ter a mesma denominação. Cada trajetória bi-infinita no grafo nos fornece um ponto na seqüência completa $\mathcal{A}^{\mathbb{Z}}$, que armazena as denominações de suas arestas. O conjunto de todos esses pontos é chamado de shift sófico. Neste capítulo, veremos que a classe dos shifts sóficos é uma coleção dos espaços de seqüências que contém todos os shifts de tipo finito. De fato, o termo sófico, proposto por Weiss, é derivado da palavra hebraica "finito".

4.1 Apresentações de Shifts Sóficos

Shifts sóficos são definidos usando grafos cujas arestas são denominadas usando os símbolos de um alfabeto finito e diversas dessas arestas podem receber a mesma denominação.

Definição 4.1 (Grafo com denominações) Um grafo com denominações \mathcal{G} é um par (G, \mathcal{D}) , onde G é um grafo com conjunto de arestas \mathcal{E} e \mathcal{D} : $\mathcal{E} \to \mathcal{A}$ é uma função que atribui a cada aresta e de G uma denominação $\mathcal{D}(e)$ do alfabeto finito \mathcal{A} . A transformação \mathcal{D} é a etiqueta de \mathcal{G} . Dizemos que G é o grafo subjacente de \mathcal{G} é G.

Um grafo com denominações é irredutível se o seu grafo subjacente é irredutível.

A figura 4.1 ilustra dois típicos grafos com denominações.

Um grafo G é convenientemente descrito por sua matriz de adjacência A_G . Um grafo com denominações \mathcal{G} será descrito, de forma análoga, por uma matriz simbólica de adjacência $A_{\mathcal{G}}$. A (I,J)-ésima entrada da matriz simbólica adjacente $A_{\mathcal{G}}$ contém a soma formal das denominações de todas as arestas que têm posição inicial em um vértice I e posição final em um vértice J, ou um caracter zero se não existirem tais arestas.

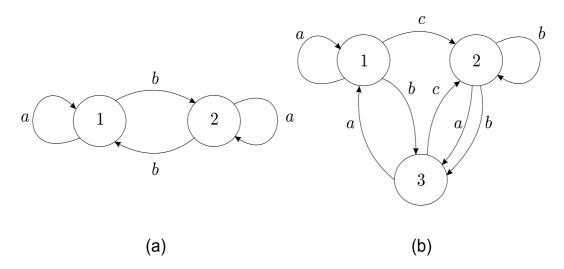


Figura 4.1: Grafos com denominações

Por exemplo, se \mathcal{G} é o grafo com denominações da figura 4.1 item (a) e \mathcal{H} é o grafo com denominações do item (b), então suas respectivas matrizes simbólicas adjacentes $A_{\mathcal{G}}$ e $A_{\mathcal{H}}$ são representadas por

$$A_{\mathcal{G}} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \quad \text{e} \quad A_{\mathcal{H}} = \begin{bmatrix} a & c & b \\ 0 & b & a+b \\ a & c & 0 \end{bmatrix}.$$

Veremos que existe uma analogia entre homomorfismos de grafos e os homomorfismos de grafos com denominações, onde as denominações de um grafo \mathcal{G} são preservadas.

Definição 4.2 Sejam $\mathcal{G} = (G, \mathcal{D}_G)$ e $\mathcal{H} = (H, \mathcal{D}_H)$ grafos com denominações. Um homomorfismo de grafos com denominações de \mathcal{G} em \mathcal{H} é um homomorfismo de grafos $(\partial \phi, \phi) : G \to H$, tal que $\mathcal{D}_H(\phi(e)) = \mathcal{D}_G(e)$ para toda aresta $e \in \mathcal{E}_G$. Neste caso, escrevemos $(\partial \phi, \phi) : \mathcal{G} \to \mathcal{H}$.

Se $\mathcal{G} = (G, \mathcal{D})$ é um grafo com denominações, então a etiqueta \mathcal{D} pode ser usada para denominar caminhos e trajetórias bi-infinitas em um grafo subjacente G. Definiremos a denominação de um caminho $\pi = e_1 e_2 \dots e_n$ em um grafo G por

$$\mathcal{D}(\pi) = \mathcal{D}(e_1)\mathcal{D}(e_2)\dots\mathcal{D}(e_n),$$

onde $\mathcal{D}(\pi)$ é um n-bloco sobre um alfabeto finito \mathcal{A} . Para cada caminho vazio \mathcal{E}_I em G, definiremos $\mathcal{D}(\mathcal{E}_I) = \mathcal{E}$, isto é, o bloco vazio sobre o alfabeto finito \mathcal{A}

Se $\xi = \dots e_{-1}e_0e_1\dots$ é uma trajetória bi-infinita em um grafo G, tal que ξ é um ponto do shift de arestas X_G , definiremos a denominação da trajetória

 ξ por

$$\mathcal{D}_{\infty}(\xi) = \dots \mathcal{D}(e_{-1})\mathcal{D}(e_0)\mathcal{D}(e_1)\dots \in \mathcal{A}^{\mathbb{Z}}$$

O conjunto de denominações de todas as trajetórias bi-infinitas de G, é denotado por

$$X_{\mathcal{G}} = \{x \in \mathcal{A}^{\mathbb{Z}} : x = \mathcal{D}_{\infty}(\xi), \text{ para algum } \xi \in X_G\} =$$

$$= \{\mathcal{D}_{\infty}(\xi) : \xi \in X_G\} = \mathcal{D}_{\infty}(X_G)$$

Assim, temos que $X_{\mathcal{G}}$ é um subconjunto do conjunto das \mathcal{A} -seqüências completas.

Exemplo 17 Se \mathcal{G} é o grafo da figura 4.1 ítem (a), então $X_{\mathcal{G}}$ é a $\{a,b\}$ -seqüência completa

Definição 4.3 (Shift sófico) Um subconjunto X de um espaço de seqüências completas é um shift sófico se $X = X_{\mathcal{G}}$ para algum grafo com denominações \mathcal{G} .

Uma apresentação de um shift sófico X é um grafo com denominações \mathcal{G} para o qual $X_{\mathcal{G}} = X$.

A aplicação shift em $X_{\mathcal{G}}$ é denotada por $\sigma_{\mathcal{G}}$.

É importante observar um shift sófico pode ter apresentações diferentes. A seguir veremos um exemplo que ilustra tais diferenças.

Exemplo 18 A Figura 4.2 mostra quatro apresentações diferentes de uma 2-seqüência completa.

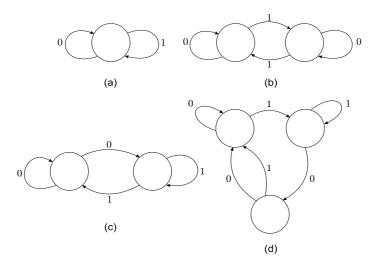


Figura 4.2: Diferentes apresentações de um shift sófico

Definição 4.4

- Se X é um shift sófico apresentado por $\mathcal{G} = (G, \mathcal{D})$ e \mathfrak{w} é um bloco na linguagem $\mathcal{L}(X)$, dizemos que um caminho π no grafo G é uma apresentação de \mathfrak{w} , se $\mathcal{D}(\pi) = \mathfrak{w}$.
- Se $x \in X_{\mathcal{G}}$, dizemos que uma trajetória bi-infinita ξ em X_G é uma apresentação de x se $\mathcal{D}(\xi) = x$.

A definição de *shift sófico* não requer que tal shift seja um espaço de seqüências. No entanto, o seguinte teorema nos garante tal afirmação.

Teorema 4.5 Shifts sóficos são espaços de seqüências

Prova: Sejam X um shift sófico sobre o alfabeto finito \mathcal{A} e $\mathcal{G} = (G, \mathcal{D})$ uma apresentação de X. A transformação $\mathcal{D} \colon \mathcal{E} \to \mathcal{A}$ nos dá o 1-código $\mathcal{D}_{\infty} \colon X_G \to X_{\mathcal{G}}$. Pelo Teorema 2.22, temos que a imagem $X = \mathcal{D}_{\infty}(X_G)$ é um espaço de seqüências e assim obtemos o resultado desejado.

O seguinte resultado, nos mostrará que shifts de tipo finito são sóficos.

Teorema 4.6 Todo shift de tipo finito é sófico.

Prova: Seja X um shift de tipo finito. Pela Proposição 3.4, temos que existe $M \geq 0$ tal que X tem memória M. Na prova do Teorema 3.17 construímos um grafo G, para obtermos $X^{[M+1]} = X_G$. Lembremos que os vértices do grafo G são os M-blocos permitidos em X e que existe uma aresta e que liga o vértice $I = a_1 a_2 \ldots a_M$ ao vértice $J = b_1 b_2 \ldots b_M$ se, e somente se,

$$a_2 a_3 \dots a_M = b_1 b_2 \dots b_{M-1}$$
 e $a_1 \dots a_M b_M = a_1 b_1 \dots b_M$

estão em $\mathcal{L}(X)$. Neste caso, nomearemos a aresta e por $a_1a_2...a_Mb_M$ e representaremos sua denominação por $\mathcal{D}(e) = a_1$. Isto nos rende um grafo com denominação $\mathcal{G} = (G, \mathcal{D})$. Mostraremos a seguir que ele é uma apresentação de X.

Seja $\beta_{M+1}: X \to X^{[M+1]} = X_G$ uma transformação de M+1-blocos com sobreposição vista na Seção 2.5.1, definida por

$$\beta_{M+1}(x)_{[i]} = x_{[i,i+M]}.$$

Se a denominação $\mathcal{D}(x_{[i,i+M]}) = x_i$, temos que dado $x = (x_i) \in X$, se verifica, pela definição da etiqueta, $\mathcal{D}_{\infty}(\beta_{M+1}(x)) = (x_i)$, provando assim que $X \subseteq X_{\mathcal{G}}$.

Reciprocamente, de acordo com a Definição 2.9 temos que todo ponto $\xi \in X_G = X^{[M+1]}$ tem a forma $\xi = \beta_{M+1}(x)$, para algum $x \in X$ tal que

 $\mathcal{D}_{\infty}(\xi) = \mathcal{D}_{\infty}(\beta_{M+1}(x)) = x \in X$. Portanto, $X_{\mathcal{G}} = \mathcal{D}_{\infty}(X_G) \subseteq X$. Assim, concluímos que $X = X_{\mathcal{G}}$ e provamos o resultado desejado.

A seguir, veremos duas definições que serão importantes no Capítulo 5.

Definição 4.7

- Um grafo $\mathcal{G} = (G, \mathcal{D})$ é injetor à direita, se para cada vértice I de G, as arestas que se iniciam em I recebem diferentes denominações.
- Seja X um shift sófico sobre um alfabeto finito A. Uma apresentação injetora à direita de um shift sófico é um grafo com denominações injetor à direita.